Forecasting Uncertainty in Electricity Demand
نویسندگان
چکیده
Generalized Additive Models (GAM) are a widely popular class of regression models to forecast electricity demand, due to their high accuracy, flexibility and interpretability. However, the residuals of the fitted GAM are typically heteroscedastic and leptokurtic caused by the nature of energy data. In this paper we propose a novel approach to estimate the time-varying conditional variance of the GAM residuals, which we call the GAM algorithm. It allows utility companies and network operators to assess the uncertainty of future electricity demand and incorporate it into their planning processes. The basic idea of our algorithm is to apply another GAM to the squared residuals to explain the dependence of uncertainty on exogenous variables. Empirical evidence shows that the residuals rescaled by the estimated conditional variance are approximately normal. We combine our modeling approach with online learning algorithms that adjust for dynamic changes in the distributions of demand. We illustrate our method by a case study on data from Réseau de transport d’électricité, the operator of the French transmission grid.
منابع مشابه
Using Weather Ensemble Predictions in Electricity Demand Forecasting
Weather forecasts are an important input to many electricity demand forecasting models. This study investigates the use of weather ensemble predictions in electricity demand forecasting for lead times from one to 10 days ahead. A weather ensemble prediction consists of 51 scenarios for a weather variable. We use these scenarios to produce 51 scenarios for the weather-related component of electr...
متن کاملIran's Electrical Energy Demand Forecasting Using Meta-Heuristic Algorithms
This study aims to forecast Iran's electricity demand by using meta-heuristic algorithms, and based on economic and social indexes. To approach the goal, two strategies are considered. In the first strategy, genetic algorithm (GA), particle swarm optimization (PSO), and imperialist competitive algorithm (ICA) are used to determine equations of electricity demand based on economic and social ind...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملAn iterative method for forecasting most probable point of stochastic demand
The demand forecasting is essential for all production and non-production systems. However, nowadays there are only few researches on this area. Most of researches somehow benefited from simulation in the conditions of demand uncertainty. But this paper presents an iterative method to find most probable stochastic demand point with normally distributed and independent variables of n-dime...
متن کاملForecasting Electricity Price Using Seasonal ARIMA model and Implementing RTP Based Tariff in Smart Grid
-A Smart Grid has a two-way digital communication system and it encourages customers to actively participate in different types of Demand Response (DR) programs. In the Smart Grid market, both the supplier and broker agent earn profit while distributing the electrical energy. They have to balance the supply and demand during the distribution of energy. They also participate in energy trading to...
متن کاملDifferent Methods of Long-Term Electric Load Demand Forecasting a Comprehensive Review
Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-co...
متن کامل